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Abstract. The method of Peierls substitution in studying the magnetic subband structure of a
hexagonal lattice is re-examined. Several errors in the formalism of a couple of recent papers are
pointed out and rectified so as to describe the effect of the magnetic field correctly.

Recently, Fekete and Gumbs [1] reported on the study of the energy spectrum of two-
dimensional (2D) Bloch electrons subject to a perpendicular sine-modulated magnetic field:

Bz(x, y) = B0 +B1(x) = B0 +B1 sin(2πx/Tx) (1)

by making the Peierls substitutionEk → ( Ep + e EA)/h̄ in the first-order energy dispersionε(Ek)
obtained by the tight-binding method. The content of [1] consists of two parts. The first part
deals with the formalism that describes the effect of magnetic modulation (i.e.,B1 6= 0) on
the energy spectrum of asquare lattice, where a correction of some errors in a paper [2] was
given. (Concerning this problem, it may be worth consulting [3].) The second part deals with
the energy spectrum of ahexagonal latticein the presence of magnetic modulation, where the
authors attempted to generalize the formalism presented in another paper [4] which deals with
the problem of the energy spectrum of the hexagonal lattice under a uniform magnetic field.
Through the studies, the authors of [1,2,4] calculated energy eigenvalues, in the absence and/or
presence of magnetic modulation, by diagonalizing the effective Hamiltonian obtained by the
Peierls substitution. However,for the hexagonal lattice, the formalism and the numerical data
presented in [1, 4] are flawed in several ways, whose origin lies in a simple but fundamental
mistake made at an early stage of the Peierls substitution. In this comment, we shall point
out the mistake and the relevant errors of [1, 4], and derive anexactformalism that enables
one to correctly describe the effect of the magnetic field given by (1) on the energy spectrum
of the hexagonal lattice. For illustration purposes, we will present numerical data for the
energy eigenvalues obtained by diagonalizing the corrected matrix with and without magnetic
modulation.

To derive the Hamiltonian matrix that describes the effect of the magnetic field given by
equation (1), we consider the energy dispersion of a 2D hexagonal lattice given by

ε(Ek) = 2
{
t0 cos(kxa) + t+ cos(kxb + kyc) + t− cos(kxb − kyc)

}
(2)

wherea is the lattice constant,b = a/2, andc = √3a/2. Making the Peierls substitution in
equation (2) yields the effective Hamiltonian

H = t0eipxa/h̄ + t+ei[pxb+pyc+eAy(x)c]/h̄ + t−ei[pxb−pyc−eAy(x)c]/h̄ + c.c. (3)
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where

Ay(x) = B0x − (B1Tx/2π) cos(2πx/Tx) (4)

is they-component of the vector potential under the Landau gauge.
The four exponents of the form eApx+Bpy+f (x) in (3) contain the operatorspx andx simult-

aneously in their arguments—unlike in the case of the square lattice—and thus we should be
very careful in manipulating them. Sincepy commutes withpx andx, we can easily decouple
eApx+Bpy+f (x) as

eApx+Bpy+f (x) = eBpyeApx+f (x) = eApx+f (x)eBpy . (5)

However, sincepx does not commute withx, we cannot simply decouple eApx+f (x) as

eApx+f (x) = eApxef (x) or ef (x)eApx . (6)

Instead, it should be written as

eApx+f (x) = eApx exp

(∫ 1

0
f (x + ih̄Aλ) dλ

)
(7)

which is a generalization of Weyl’s formula and can be derived by using the Baker–Hausdorff
lemma [5]. In particular, forf (x) = Cx +D cos(Kx), equation (7) becomes

eApx+Cx+D cos(Kx) = eApxeC(x+ih̄A/2)−iDξ(x)/h̄AK (8)

where

ξ(x) = sin[K(x + ih̄A)] − sin(Kx). (9)

Combining (5) and (8) with (3), we can write

H = t0(eipxa/h̄ + e−ipxa/h̄) + t+e−iπα/2(eipyc/h̄eipxb/h̄ei(παx ′+ν−) + e−ipyc/h̄e−ipxb/h̄e−i(παx−ν+))

+ t−eiπα/2(e−ipyc/h̄eipxb/h̄e−i(παx ′+ν−) + eipyc/h̄e−ipxb/h̄ei(παx ′−ν+)) (10)

where

ν±(x ′) = αγ

πβ2

{
sin[πβ(x ′ ± 1)] − sin(πβx ′)

}
x ′ ≡ x

b
(11)

and

α = eB0ac/2πh̄ β = a/Tx γ = B1/B0. (12)

Denoting the lattice points as(m, n) = (x/b, y/c) and using the translational property
e−i Ep·Eξ |Er〉 = |Er + Eξ〉, we can write the Schrödinger equation〈Er|H|ψ〉 = Eψ(Er) as

Eψm,n = t0(ψm−2,n +ψm+2,n) + t+(e
−iθm−1ψm−1,n−1 + eiθmψm+1,n+1)

+ t−(eiθm−1ψm−1,n+1 + e−iθmψm+1,n−1) (13)

where

θm ≡ θ(0)m + θ(1)m = πα
(
m +

1

2

)
− αγ

πβ2
{sin[(m + 1)πβ] − sin(mπβ)} (14)

is the magnetic phase factor. Note thatθm plays a key role in studying the magnetic subband
structure within the tight-binding approximation since all the effects of the applied magnetic
field are held in it; θ(0)m reflects the effect ofB0 while θ(1)m reflects the effect ofB1(x).
Since the variabley is cyclic under the Landau gauge, we can write the wave function as
ψ(x, y) = eikyyψ(x), which in turn enables us to write (13) as

Eψm = t0ψm−2 + δ∗m−1ψm−1 + δmψm+1 + t0ψm+2 (15)
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where

δm = t+eiµm + t−e−iµm (16)

with

µm = θm + kyc. (17)

Let us assume thatα = p/q wherep andq are coprime integers and thatTx (>2) is an
integer. Then, the period ofθ(0)m is q (2q) for even (odd)p and that ofθ(1)m is 2Tx if we set
a ≡ 1. Thus, the period ofθm is given by

T =
{

L.C.M.(q, 2Tx) for evenp

L.C.M.(2q, 2Tx) for oddp
(18)

which leads to the relationsµm+T = µm andδm+T = δm. Therefore, the Bloch condition along
thex-direction can be expressed asψm+T = eikxT bψm, and the characteristic matrix that gives
rise to energy eigenvalues in the presence of magnetic modulation can be written as

A =



0 δ1 t0 0 · · · 0 t0e−iη δ∗T e−iη

δ∗1 0 δ2 t0 · · · 0 0 t0e−iη

t0 δ∗2 0 δ3 · · · 0 0 0
0 t0 δ∗3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 0 δT−2 t0
t0eiη 0 0 0 · · · δ∗T−2 0 δT−1

δT eiη t0eiη 0 0 · · · t0 δ∗T−1 0


(19)

whereη = kxT b. Note that, whenγ = 0, the period ofθm, and thus the order ofA, is given
by T0 which equalsq (2q) for even (odd)p.

We are now in position to discuss the formalism of [1, 4]. To this end, we refer to (14)
and (16) of [1] asAF andµF

m, and (6) of [4] asAG. The most fundamental mistake made by
the authors of [1, 4] lies in the fact that they employed (6) instead of (7) for developing the
formalism. Since (6) is meaningful only in the ¯h → 0 limit, it is evident that the formalism
in [1, 4] is not suitable for describing the quantum-mechanical behaviour of Bloch electrons
in the presence of the magnetic field. To put this concretely,µF

m is an erroneous expression
as a result of the mistake;θ(0;F,G)m (≡2πmα) andθ(1;F)m (≡−(αγ /β) cos(2πmβ)) should be
replaced byθ(0)m andθ(1)m , respectively, in order to describe correctly the effect of the magnetic
field given by (1). Note thatµF

m in turn has a crucial influence on the order of the characteristic
matrix. Since the period ofθ(0;F,G)m is q and that ofθ(1;F)m is Tx , the period ofµF

m becomes
T ′ = qTx , resulting inψm+T ′ = eikxT ′bψm. Thus, the order ofAF is T ′ for generic values
of q andTx . However, as shown above, the order of the corrected matrixA is not T ′ but
T . Besides which, the order ofA for γ = 0 is notq but T0, in contrast to the assertion
of [4]. Another indication that the formalism of [1,4] is incorrect can be found in the fact that
AF andAG are non-Hermitian, contrary to the general rule that a matrix which gives rise to
real eigenvalues should be Hermitian. All of these arguments in this paragraph indicate that
the relevant numerical data, i.e., figures 3 and 4 in [1] and all the figures in [4], obtained by
diagonalizingAF and/orAG are not in fact the solutions of the problem that the authors of [1,4]
attempted to solve.

Figures 1(a) and 1(b) show plots of the energy eigenvalues versusα in the absence of
magnetic modulation (i.e.,γ = 0). We can see that figure 1(a) is the same as figure 3 of [6]
while it is quite different from figure 1 of [4], which shows how greatly the energy spectrum is
changed whenθ(0;F,G)m instead ofθ(0)m is employed in the calculation. Indeed, even though the



1542 Gi-Yeong Oh

-6

6

0 1

E

p/q

(a)

-8

8

0 1

E

p/q

(b)

Figure 1. Energy eigenvalues versusα for γ = 0 with (a) (t0, t+, t−) = (1, 1, 1) and
(b) (t0, t+, t−) = (2, 1, 1). Calculations are performed forα = p/101 (1 6 p 6 100) and
(kx, ky) = (0, 0).

authors of [4] were aware that their result differs from that of [6], they might not have realized
that the two works [4, 6] deal with exactly the same problem. Comparison of figure 1(b)
with figure 3 of [4] also shows how sensitively the energy spectrum depends onθ(0)m in the
presence of the hopping anisotropy. Figures 2(a) and 2(b) show plots of the energy eigenvalues
versusα in the presence of the magnetic modulation, where the same parameters as in [1] are
chosen for comparison. The plots show that introducing magnetic modulation leads to very
complicated subband structure; gap closing and subband broadening observed in the case of a
square lattice [3,7] can also be seen. Comparison of figures 2(a) and 2(b) with figures 3 and 4
of [1] also shows the importance of the correct choice ofθ(1)m . For instance, the straight lines
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Figure 2. As figure 1, except thatγ = 2 andTx = 4.
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of E = −2 and/orE = −4 along theα-axis in some plots of [1,4] do not appear if we use the
correct form of the magnetic phase factor (i.e., equation (14)) in the calculation.

Before finishing this comment, we would like to make two remarks. One is that, since
we focused our attention in this comment on the formalism of [1, 4], detailed description of
the effect of magnetic modulation on the energy spectrum of the hexagonal lattice is still
lacking and thus further study on this problem is required for better understanding. The other
is that (13) and thus (19) can also be obtained without difficulty if we start directly from the
tight-binding Hamiltonian given by

H =
∑
ij

tije
iθij |i〉〈j | (20)

where

θij = (e/h̄)
∫ j

i

EA · dEl.

Indeed, it can be easily checked that

θm,n;m±2,n = 0 θm,n;m+1,n±1 = ±θm θm,n;m−1,n±1 = ±θm−1 (21)

and that combining (21) with (20) leads to (13), which confirms the correctness of the formalism
derived in this comment.
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